The Maths
Society In the diagram DE = a $\overrightarrow{DH} = b$ HG = 8b EX : XH = 3 : 1 8b

EF : FG = 1 : 3

17 (a) (i)
$$\mathbf{m} = \begin{pmatrix} 5 \\ 7 \end{pmatrix}$$

Find 3 \mathbf{m} .

(ii)
$$\overrightarrow{VW} = \begin{pmatrix} 10 \\ -24 \end{pmatrix}$$

Find $|\overrightarrow{VW}|$.

$$\int (10)^2 + (-24)^2 = 240$$

OABC is a parallelogram.

$$\overrightarrow{OA} = \mathbf{p}$$
 and $\overrightarrow{OC} = \mathbf{q}$.

E is the point on AB such that AE : EB = 3 : 1.

Find
$$\overrightarrow{OE}$$
, in terms of p and q , in its simplest form.

$$\overrightarrow{OE} = \overrightarrow{OA} + \overrightarrow{AE}$$

$$= \overrightarrow{P} + \cancel{3}_{1} \cancel{q} \cancel{q}$$

$$\overrightarrow{OE} =$$
 \cancel{OE} \cancel

2 (a)
$$\mathbf{p} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$$
 $\mathbf{q} = \begin{pmatrix} -2 \\ 7 \end{pmatrix}$

(i) Find
$$2p+q$$
.
 $2\binom{4}{5} + \binom{-2}{7} = \binom{8}{10} + \binom{-2}{7}$
 $= \binom{6}{17}$

 $\begin{pmatrix} 6 \\ 17 \end{pmatrix}$ [2]

(ii) Find |p|.

$$\sqrt{4^2 + 5^2} = 541$$

= 6.4

6.4

(b) A is the point (4, 1) and $\overrightarrow{AB} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$.

Find the coordinates of B.

(c) The line y = 3x - 2 crosses the y-axis at G.

Write down the coordinates of G.

$$y=3(\delta)-2$$
$$=-2$$

23 (a)

The diagram shows a parallelogram CDEF.

 $FE = \mathbf{m}$ and $CE = \mathbf{n}$.

B is the midpoint of CD.

FA = 2AC

Find an expression, in terms of **m** and **n**, for \overrightarrow{AB} .

Give your answer in its simplest form.

$$\overrightarrow{AB} = \frac{1}{3} \cdot 2 + \frac{1}{3} \cdot 2 + \frac{1}{3} \cdot 2 + \frac{1}{3} \cdot 2 + \frac{1}{6} \cdot 2 = \frac{1}{3} \cdot 2 = \frac{1}{3$$

(b)
$$\overrightarrow{GH} = \frac{5}{6}(2\mathbf{p} + \mathbf{q}) \qquad \overrightarrow{JK} = \frac{5}{18}(2\mathbf{p} + \mathbf{q})$$

Write down **two** facts about vectors \overrightarrow{GH} and \overrightarrow{JK} .

They are parallel to each other

GH has a larger magnitude
[2]

22

NOT TO SCALE

The diagram shows a triangle OAB and a straight line OAC. OA : OC = 2 : 5 and M is the midpoint of AB.

 $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

Find, in terms of a and b, in its simplest form

(a) \overrightarrow{AB} ,

 $\overrightarrow{AB} = \mathbf{D} - \mathbf{Q}.$ [1]

$$\overrightarrow{MC} = \frac{1}{2} \mathbf{b} + \mathbf{a}$$

The Maths Society

21

O is the origin and OPQR is a parallelogram.

SOP is a straight line with SO = OP.

TRQ is a straight line with TR = RQ.

STV is a straight line and ST: TV = 2:1.

 $\overrightarrow{OR} = \mathbf{a}$ and $\overrightarrow{OP} = \mathbf{b}$.

- (a) Find, in terms of a and b, in its simplest form,
 - (i) the position vector of T,

(ii) \overrightarrow{RV} .

$$\overrightarrow{RV} = 2 - 5$$

$$(1)$$

(b) Show that PT is parallel to RV.

$$\overrightarrow{PT} = -2\underline{b} + \underline{a}$$

$$= \underline{a} - 2\underline{b}$$

$$= 2(\frac{1}{2}\underline{a} - \underline{b})$$

$$= 2\overrightarrow{RV}$$

The Maths Society

NOT TO **SCALE**

In the diagram, O is the origin, OT = 2TD and M is the midpoint of TC. $\overrightarrow{OC} = \mathbf{c}$ and $\overrightarrow{OD} = \mathbf{d}$.

Find the position vector of M.

Give your answer in terms of c and d in its simplest form.

$$TC = OC - OT$$

$$3 = -\frac{2}{3}d$$

$$TM = \frac{1}{2} = -\frac{1}{3}d$$

$$OM = OT + TM$$

$$= \frac{2}{3}d + \frac{1}{2}e - \frac{1}{3}d$$

$$= \frac{1}{3}d + \frac{1}{2}e$$

$$= \frac{1}{3}d + \frac{1}{2}e$$

$$= \frac{1}{3}d + \frac{1}{2}e$$

[3]

8 (a)
$$\overrightarrow{AB} = \begin{pmatrix} 6 \\ -1 \end{pmatrix}$$
 $\overrightarrow{BC} = \begin{pmatrix} -2 \\ 5 \end{pmatrix}$ $\overrightarrow{DC} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$

Find

(i)
$$\overrightarrow{AC}$$
,

(ii)
$$\overrightarrow{BD}$$
, $\overrightarrow{OC} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$

(iii) $|\overrightarrow{BC}|$.

(iii) $|\overrightarrow{BC}|$.

 $\overrightarrow{BD} = \begin{pmatrix} -4 \\ 8 \end{pmatrix}$ [2]

 $\overrightarrow{SD} = \begin{pmatrix} -4 \\ 8 \end{pmatrix}$ [2]

 $\overrightarrow{SD} = \begin{pmatrix} -4 \\ 8 \end{pmatrix}$ [2]

 $\overrightarrow{SD} = \begin{pmatrix} -4 \\ 8 \end{pmatrix}$ [2]

(b)

In the diagram, OAB and OED are straight lines. O is the origin, A is the midpoint of OB and E is the midpoint of AC. $AC = \mathbf{a}$ and $CB = \mathbf{b}$.

Find, in terms of a and b, in its simplest form

(i)
$$\overrightarrow{AB}$$
,

(ii)
$$\overrightarrow{OE}$$
, $\overrightarrow{AE} = 2$

$$\overrightarrow{OE} = 2 + 5 + 2 = 2$$

$$\overrightarrow{OE} = 2 + 5 + 2 = 2$$

$$\overrightarrow{OE} = 2 + 5 = 2$$
[2]

(iii) the position vector of
$$D$$
.

$$\begin{array}{rcl}
 & = 2a + b + 3b \\
 & =$$

The Maths Society